Coupled effects of applied load and surface structure on the viscous forces during peeling.
نویسندگان
چکیده
Tree frogs are able to take advantage of an array of epithelial cells in their toe pads to modulate their adhesion to surfaces under dry, wet, and flooded environments. It has been hypothesized that the interconnected channels separating the epithelial cells could reduce the hydrodynamic repulsion to facilitate contact under a completely submerged environment (flooded conditions). Using a custom-built apparatus we investigate the interplay between surface structure and loading conditions on the peeling force. By combining a normal approach and detachment by peeling we can isolate the effects of surface structure from the loading conditions. We investigate three surfaces: two rigid structured surfaces that consist of arrays of cylindrical posts and a flat surface as a control. We observe three regimes in the work required to separate the structured surface that depend on the fluid film thickness prior to pull out. These three regimes are based on hydrodynamics and our experimental results are compared with a simple scaling argument that relates the surface features to the different regimes observed. Overall we find that the work of separation of a structured surface is always less than or equal to that for a smooth surface when considering purely viscous contributions.
منابع مشابه
Coupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure
The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...
متن کاملNonlinear Instability of Coupled CNTs Conveying Viscous Fluid
In the present study, nonlinear vibration of coupled carbon nanotubes (CNTs) in presence of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory. CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal magnetic field. Using von Kármán geometric nonlinearity and Hamilton’s principle, the nonlinear higher order governing equations are deriv...
متن کاملAn Energy Based Adaptive Pushover Analysis for Nonlinear Static Procedures
Nonlinear static procedure (NSP) is a common technique to predict seismic demands on various building structures by subjecting a monotonically increasing horizontal loading (pushover) to the structure. Therefore, the pushover analysis is an important part of each NSP. Accordingly, the current paper aims at investigating the efficiencyof various algorithms of lateral load patterns applied to the...
متن کاملNonlinear Dynamic Buckling of Viscous-Fluid-Conveying PNC Cylindrical Shells with Core Resting on Visco-Pasternak Medium
The use of intelligent nanocomposites in sensing and actuation applications has become quite common over the past decade. In this article, electro-thermo-mechanical nonlinear dynamic buckling of an orthotropic piezoelectric nanocomposite (PNC) cylindrical shell conveying viscous fluid is investigated. The composite cylindrical shell is made from Polyvinylidene Fluoride (PVDF) and reinforced by ...
متن کاملUnsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions
In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 10 شماره
صفحات -
تاریخ انتشار 2015